Speed of Fronts of the Reaction-Diffusion Equation.

نویسندگان

  • Benguria
  • Depassier
چکیده

In a recent paper Goriely considers the one–dimensional scalar reaction– diffusion equation ut = uxx + f(u) with a polynomial reaction term f(u) and conjectures the existence of a relation between a global resonance of the hamiltonian system uxx+f(u) = 0 and the asymptotic speed of propagation of fronts of the reaction diffusion equation. Based on this conjecture an explicit expression for the speed of the front is given. We give a counterexample to this conjecture and conclude that additional restrictions should be placed on the reaction terms for which it may hold. 82.40.Ck, 47.10+g, 3.40Kf, 2.30.Hq Typeset using REVTEX 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speed of traveling fronts in a sigmoidal reaction-diffusion system.

We study a sigmoidal version of the FitzHugh-Nagumo reaction-diffusion system based on an analytic description using piecewise linear approximations of the reaction kinetics. We completely describe the dynamics of wave fronts and discuss the properties of the speed equation. The speed diagrams show front bifurcations between branches with one, three, or five fronts that differ significantly fro...

متن کامل

Propagation of fronts of a reaction-convection-diffusion equation

We study the speed of propagating fronts of the convection reaction diffusion equation ut + μuux = uxx + f(u) for reaction terms f(u) such that in the non convective case fronts joining two equilibrium states exist. A variational principle for the wave speed is constructed from which upper and lower bounds are obtained. We find that, in general, there is a transition value μc below which advect...

متن کامل

Effect of a cutoff on pushed and bistable fronts of the reaction-diffusion equation.

We give an explicit formula for the change of speed of pushed and bistable fronts of the reaction-diffusion equation when a small cutoff is applied to the reaction term at the unstable or metastable equilibrium point. The results are valid for arbitrary reaction terms and include the case of density-dependent diffusion.

متن کامل

Front propagation in hyperbolic fractional reaction-diffusion equations.

From the continuous-time random walk scheme and assuming a Lévy waiting time distribution typical of subdiffusive transport processes, we study a hyperbolic reaction-diffusion equation involving time fractional derivatives. The linear speed selection of wave fronts in this equation is analyzed. When the reaction-diffusion dimensionless number and the fractional index satisfy a certain condition...

متن کامل

Variational principle for the asymptotic speed of fronts of the density-dependent diffusion-reaction equation.

We show that the minimal speed for the existence of monotonic fronts of the equation ut = (u )xx + f(u) with f(0) = f(1) = 0, m > 1 and f > 0 in (0, 1), derives from a variational principle. The variational principle allows to calculate, in principle, the exact speed for general f . The case m = 1 when f (0) = 0 is included as an extension of the results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 77 6  شماره 

صفحات  -

تاریخ انتشار 1996